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A wide class of exact solutions is obtained for the problem of finding the equilibrium configurations of
charged jets of a conducting liquid; these configurations correspond to the finite-amplitude azimuthal defor-
mations of the surface of a round jet. A critical value of the linear electric charge density is determined, for
which the jet surface becomes self-intersecting, and the jet splits into two. It exceeds the density value required
for the excitation of the linear azimuthal instability of the round jet. Hence, there exists a range of linear
charge-density values, where our solutions may be stable with respect to small azimuthal perturbations.
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I. INTRODUCTION

Cylindrical jets are known to be unstable with respect to
small surface perturbations because of the development of
the Rayleigh instability caused by capillary effectsf1g. For
electrically charged jets, electrostatic forces are an additional
factor that determines the system behavior. The Coulomb
interaction of electric charges suppresses the large-scale axial
capillary instability. On the contrary, it can lead to the growth
of nonaxisymmetric modes of disturbances which are stable
for the uncharged jetsseef2–4g and references thereind. In
order to understand the main laws governing the behavior of
a charged jet, it is important to define conditions when the
mutual compensation of the electrostatic and capillary forces
is possible, as well as the conditions when such compensa-
tion is impossible. Therefore, the necessity arises to deter-
mine the region of existence of stable solutions for the prob-
lem of the equilibrium configurations of the jet surface.

In this paper, we consider possible equilibrium shapes of a
charged infinite jet of a conducting liquidsan electric charge
distributes itself over the liquid surface so that the electric
field potential is constant everywhere inside of the conduc-
tord. In doing so, we restrict our analysis to the particular
case of the azimuthal deformations of the initially circular jet
saxial deformations can be suppressed by the longitudinal
magnetic fieldd. For this case, the instability is induced by
the electrostatic forces, while the surface tension forces play
a stabilizing role.

We are presently only aware of a few nontrivial solutions
of the classical problem in electrostatics, that is, the problem
of finding the stationary configurations of the charged sur-
face of a conducting liquidsthe flat surface, the circular cyl-
inder surface, and the sphere belong to the trivial solutionsd.
We should primarily mention the so-called Taylor cone. In
Ref. f5g, Taylor has demonstrated that the surface electro-
static pressure for a cone with angle 98.6° is inversely pro-
portional to the distance from its axis and, hence, can be
counterbalanced by the capillary pressuresthe sole exception
is the cone apex where the force balance condition is vio-
latedd. Recently, the first author of the present paper has

shownf6g that for the case of plane symmetry, the problem
of the steady-state shape of the free surface of a conducting
liquid in an external electrical field is mathematically similar
to the problem of the progressive capillary wave solved by
Crapperf7g. The analogy provides an easy way of solving
the electrostatics problemf8g. Finally, the method of con-
structing exact solutions for the equilibrium configurations of
the charged two-dimensional drops was proposed in Ref.f9g.
It should be noted that apart from the transformations, this
problem coincides with that of the stationary shape of a two-
dimensional air bubble in a circulatory ambient flow. The
solutions found by Zubarev for an arbitrary mode numbern
f9g were independently given by Crowdy forn=2 f10g and
by Wegmann and Crowdy forn=3,4,5. . .f11g in the prob-
lem with the bubbles. The approaches developed in Refs.
f9–11g turn out to be useful for the following analysis of
possible configurations of charged jets.

The article is made up as follows. In Sec. II, we give the
equations defining the equilibrium configuration of the
charged surface of a conducting liquid for the case of plane
symmetry. It is shown that conformal transformations allow
us to reduce the investigation to the analysis of a nonlinear
boundary-value problem on a half-plane for the Laplace
equation. In Sec. III, using the results of Refs.f9–11g, we
obtain exact solutions for the jet configurations correspond-
ing to the azimuthal mode numbersn=2,3,4. . .. InSec. IV,
the equilibrium surfaces corresponding to our solutions are
investigated. We formulate the conditions under which the
surfaces become self-intersecting, and the jet splits into sev-
eral separate jets. In Sec. V, we analyze the dependence of
the jet surface deformation amplitude on the control param-
eter slinear electric charge densityd for different azimuthal
numbers. It turns out that we deal with a soft loss of stability
of the round jet surface forn=2,3,4 ssupercritical bifurca-
tiond and with a hard loss of stability forn.4 ssubcritical
bifurcationd. Section VI contains our conclusions and some
remarks concerning conditions whereby the solutions ob-
tained can play an important role in the jet behavior.

II. INITIAL EQUATIONS

Let us write the equations of electrostatics that describe a
stationary profile of the charged surface of the conducting*Electronic address: nick@ami.uran.ru
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liquid jet with constant cross section along the direction of
its motion ssee Fig. 1d. The distribution of the electric-field
potentialw in the plane of the jet cross sectionhx,yj is de-
termined by the Laplace equation,

wxx + wyy = 0.

It should be solved together with the condition that the con-
ductor surface is equipotential,

w = 0,

and also the condition that the field of the charged conductor
coincides at infinity with the field of a uniformly charged
straight filament,

w → − Q lnsx2 + y2d, x2 + y2 → `, s1d

whereQ is the linear electric charge density of the conductor.
The jet will be considered to move at the constant velocity

v along thez axis of the Cartesian coordinate systemsa fluid
is at rest in the system of coordinates moving with the jetd.
Then the equilibrium relief of the charged boundary of a
conducting liquid is determined by the Laplace-Young stress
condition, that is, the balance condition for the electrostatic
and capillary forces acting on the surface,

s8pd−1s¹wdw=0
2 + aC + p = 0, w = 0, s2d

wherea is the surface tension coefficient andC is the local
curvature of the surface. The constantp is expressed in terms
of the jet velocitysvd, liquid density srd, and the external
sped and internalspid pressures,

p = pi − pe − rv2/2.

It is apparent that an infinitely long cylindrical jet with a
circular cross sectionsi.e., a round jetd gives the trivial solu-
tion of the problem. In what follows, we will obtain its non-
trivial solutions corresponding to the azimuthal deformations
of the round jet surface.

For convenience, we convert to the dimensionless vari-
ables

x → Q2s2pad−1x, y → Q2s2pad−1y,

w → 2Qw, p → 2pa2Q−2p.

By analogy with Ref.f7g, we choosef =lnu¹wu as a new
unknown function, and the pair of conjugate harmonic func-
tions w and c as new independent variablessthe condition
c=const defines the electric field linesd. The so-called com-
plex potentialw=w− ic is an analytic function of the com-
plex variablez=x+ iy. The complex expression lns−dw/dzd
is also an analytic function, and, as a consequence, the real
functions

f ; Re lns− dw/dzd = lnu ¹ wu, s3d

u ; − Im lns− dw/dzd = arctanswy/wxd s4d

are conjugate harmonic functions of the variablesw andc. In
particular, this implies that the functionf satisfies the
Laplace equation,

fww + fcc = 0. s5d

The boundary conditions forf can be derived from the ex-
pressionss1d and s2d. We get

fw = pe−f + ef, w = 0, s6d

f → w, w → − `, s7d

where we have taken into account that the fluid surface cur-
vature can be expressed in terms of the functionsf andw in
the following way:C=−sfw exp fdw=0. Since in the limituzu
→` we havew→−ln z for the complex potential and, con-
sequently, a closed surface corresponds to changingc by 2p,
we add the condition for periodicity off with respect to the
variablec,

fsw,cd = fsw,c + 2pd, s8d

closing the system of equations for the functionf.
Thus, the problem of finding the steady-state profile of a

cylindrical jet surface amounts to studying the boundary-
value problems5d–s8d on the half-planewø0.

III. EXACT SOLUTIONS

A wide class of particular solutions of Eqs.s5d–s8d was
obtained in Ref.f9g. They are given by the formula

f = lnS l − 1

2
D + lnS1 + a2b2e2nw + 2abenw cossncd

a2 + b2e2nw − 2abenw cossncd D + w,

s9d

where we put

a = Îsn − 1d/sn + 1d, b = Îsn − ld/sn + ld.

In these expressionsn is the azimuthal mode numbersn
=2,3,4, . . .d and l =Î1−4p is the parameter characterizing
the amplitude of the surface deformation of the round jet.

Let us construct the equilibrium surfaces corresponding to
the solutions9d. It follows from the definitionss3d and s4d
that the inverse transformation from the variablesw andc to
x andy is determined by the relation

FIG. 1. The geometry of the azimuthally perturbed liquid jet is
represented schematically. The jet cross section is constant along
the z axis.
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z= −E exps− f + iuddw, s10d

whereu is the angle of inclination of the electric field inten-
sity vector to the abscissa direction. Taking into account that
f and u are conjugate harmonic functions and thus the
Cauchy-Riemann conditions are satisfied suc

= fw anduw=−fcd, we obtain from Eq.s9d

f − iu = lnS l − 1

2i
D + 2 lnS1 + abenw

a − benw D + w.

Substituting this expression into Eq.s10d, we get

z=
2i

sl − 1d E Satn − b

tn + ab
D2

dt =
2ia2tstn + b/a3d
sl − 1dstn + abd

, s11d

where we have introduced the notationt=exps−wd. The
transformation corresponding to Eq.s11d maps the unit circle
utu=1 onto the free surface of a liquid. The algebraic expres-
sion s11d relates the results of Ref.f9g and the results of
Refs. f10,11g, where the conformal mapping to the exterior
of the unit disk was applied for the problem related to an
analysis of the profile of a two-dimensional bubble in a cir-
culatory ambient flow.

Bearing in mind thatw=0 at the boundary and, conse-
quently,t=expsicd, we obtain from Eq.s11d that the sought-
for equilibrium surfaces are given by the following paramet-
ric expression:

z=
2ia2eicseinc + b/a3d
sl − 1dseinc + abd

, s12d

wherec plays the role of the parameter. The closed surface
corresponds to the change inc in the range 0øc,2p.

Let us return to the real variables. Having separated the
real part from the imaginary one in Eq.s12d, we find

y =
a−1b cossnc − cd + a3b cossnc + cd + sa2 + b2dcosc

f1 + a2b2 + 2abcossncdgsl − 1d/2
,

s13d

x =
a−1b sinsnc − cd − a3b sinsnc + cd − sa2 + b2dsinc

f1 + a2b2 + 2abcossncdgsl − 1d/2
.

s14d

The formulass13d ands14d represent a family of exact two-
parametric solutions for the equilibrium shape of a charged
jet of a conducting liquid. To the best of our knowledge,
these solutions for the jet configurations have not been con-
sidered so far.

The particular solutionss13d and s14d of the initial equa-
tions relate to the casepÞ0. Note that forp=0 it is possible
to find the general solution of Eqs.s5d–s8d. It has the follow-
ing form:

f = lns1 − c2d − lnsc2 − 2ce−w cosc + e−2wd − w, s15d

where the constantc satisfies the inequality 0øc,1. This
solution is 2p-periodical with respect toc, so that it corre-

sponds to the azimuthal numbern=1. The equilibrium sur-
face is given by the parametric expression

z=
1

1 − c2seic − c2e−ic − 2cicd.

One can readily see that this surface has the self-intersections
for arbitraryc. Thus, the solutions15d with the mode number
n=1 is physically meaningless.

IV. CONDITIONS OF THE JET SPLITTING

The solutionss13d and s14d obtained in the previous sec-
tion enable us to find exact critical values of the linear charge
densities requiredsid for the onset of the azimuthal instability
of the round jet andsii d for the jet splitting.

In the limit l →n, expressionss13d and s14d for the equi-
librium shape of a charged jet of a conducting liquid define
circles of radius 2/sn+1d, which correspond to the unper-
turbed state of the jet, namely, to the round jet. With decreas-
ing the parameterl, the jet surface is deformed. At certain
n-dependent critical valuesln of the parameterl, the region
occupied by the liquid ceases to be simply connected, and
the jet splitsssee Figs. 2–4d. For 1, l , ln, the solutions are
physically meaningless so that for fixedn the set of the prob-
lem solutions corresponds to the intervallnø l øn.

We now determine the critical values of the parameterl.
For n=2, the condition of the surface self-intersection has
the form

x = 0, c = p/2,

which corresponds to the singularity at the pointx=y=0. It
follows from this condition thatl2 is a root of the quadratic
equation

FIG. 2. Typicalssuperposedd cross sections of the charged jet of
a conducting liquid for n=2 and parameter valuesl
=1.86,1.94,1.88,2. The cross-section areas are normalized to a
constant.

FIG. 3. The cross sections of the jet forn=3 and parameter
valuesl =2.53,2.59,2.78,3.
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7l2
2 − 6l2 − 13 = 0.

Only one solution of the equation,l2=13/7<1.86, meets the
requirement 1, l2,2. The jet splits into two equal parts at
this value of the parameterl ssee Fig. 2d.

For n.2, the condition of the self-intersection of the sur-
face can be written as

x = 0, dx/dc = 0.

Hence it follows that the critical values ofl, i.e., the quanti-
ties ln, are determined by the set of equations

asn + 1dsa2 + b2dcosc = 2bsn − 1dfn sinsncdsinc

+ cossncdcoscg, s16d

asn + 1d2sa2 + b2dsinc = 2bf2n sinsncdcosc − sn2 + 1d

3cossncdsincg. s17d

It is easy to see that, dividing Eq.s17d by Eq. s16d, we can
eliminate the parameterl from these equations. As a result,
we obtain the equation forc at the point of the curve self-
intersection,

tansncdfsn2 − 1dtan2 c − 2g + 2n tanc = 0.

With the help of de Moivre’s formula, this trigonometrical
equation can be brought to the algebraic form

fsn2 − 1dh2 − 2gIms1 + ihdn + 2nhRes1 + ihdn = 0, s18d

where we puth=tanc. Solving this equation of thenth or-
der, we can define the value ofh and, consequently, ofc for
any n. At given c, the sought-for critical values of the pa-
rameterl can be determined from the relations16d, which
can be transformed into the quadratic equation with respect
to the unknown quantityln.

For n=3, the expressions18d transforms into the trivial
equation h2=1, from which it follows that the self-
intersection takes place atc=p /4. For this value of the pa-
rameterc, the conditions16d reduces to solving the equation

17l3
2 − 18l3 − 63 = 0.

Its root satisfying the condition 1, l3,3 is l3=s9
+24Î2d /17<2.52. If l = l3, the volume occupied by liquid
loses its simple connectivity and one jet splits into four un-
equal parts. This situation is illustrated in Fig. 3.

For n=4 ssee Fig. 4d, we obtain from Eq.s18d h2=5/13,
and Eq.s16d transforms into the equation

443l4
2 − 486l4 − 2957 = 0.

It follows herefrom thatl4=s243+370Î10d /443<3.19. For
the next azimuthal number,n=5, we deduce from Eq.s18d

3h4 − 24h2 + 5 = 0,

and henceh2=4±Î43/3. Substituting this value of the pa-
rameterh into Eq.s16d, we getl5<3.85. In a similar manner,
we can find thatl6<4.55 andl8<5.85.

Thus, we have defined the values of the parameterl for
which the solutions of the problem of the equilibrium con-
figurations of the jet surface exist. Let us now consider a jet
with given characteristicssthe cross-section areaS and the
surface tension coefficientad and determine the linear charge
densitiesQ, which correspond to the allowable values ofl,
i.e., to the intervallnø l øn.

For the family of the solutionss13d and s14d, the areaS
can be easily found with the help of the Green’s formula
scompare with Ref.f11gd,

S= −
n

2
ImE

0

2p/n

z
dz̄

dc
dc =

4pfsl + 1d2 − 4ng
sl2 − 1d2 ,

where the dependences12d of the complex variablez on c
has been used. Returning to initial dimensional quantities,
we get

S=
Q4fsl + 1d2 − 4ng

pa2sl2 − 1d2 .

Solving this relation with respect toQ, we arrive at the de-
pendence of the linear charge density on the surface tension
a, the jet cross-section areaS, and the steady-state solution
parametersl andn,

Q = Fpa2Ssl2 − 1d2

sl + 1d2 − 4n
G1/4

. s19d

It enables us to determine the critical values of the charge
density.

In the problem under consideration, we can define two
critical charge-density values for every azimuthal wave num-
ber n. The first critical density valueQn corresponds to the
threshold of linear instability of the jet with a round cross
section. It can be calculated from the formulas19d, where we
must takel =n frecall that forl =n the expressionss13d and
s14d define circlesg,

Qn = fpsn + 1d2a2Sg1/4.

The critical charge density is seen to grow monotonically
with n. Its minimum value corresponds ton=2,

FIG. 4. The cross sections of the jet forn=4 and parameter
valuesl =3.19,3.35,3.8,4.
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Q2 = s9pa2Sd1/4 < 2.31a1/2S1/4.

If the linear charge densityQ of the jet exceeds this value, an
electrohydrodynamic instability of the jet surface will de-
velop. At the initial stage of the process, this leads to the
elliptic deformation of the jet cross section. The disturbances
corresponding to the modes with lesser spatial scales,n.2,
can grow only at larger values of the linear charge density.

The second critical density valueQ̃n corresponds to the
situation when the volume occupied by the jet loses its
simple connectivity and the jet splits into two or more sepa-
rate jetsssee Figs. 2–4d. We can find it substitutingl = ln into
Eq. s19d,

Q̃n = Fpa2Ssln
2 − 1d2

sln + 1d2 − 4n
G1/4

.

The charge density takes the minimal value forn=2, whence
it follows that the jet splitting into two approximately equal
parts can be considered as the most probable scenario of the
jet disintegration. Sincel2=13/7, the exact minimal value of
the second critical density is given by the following expres-
sion:

Q̃2 = s1800pa2S/49d1/4 < 3.28a1/2S1/4.

Note that the critical densitiesQn can be found from the
linear analysis of the stability of the round jet surfacessee,
for example, Refs.f3,12gd. In so doing, it is not necessary to
know the exact solutions for the stationary jet shape. How-
ever, we must know them for determining the conditions of
the jet splitting or, in other words, for finding the second
critical charge densities.

V. STABILITY ANALYSIS

Now consider the dependence of the jet surface deforma-
tion amplitude on the linear electric charge density. Such an
analysis will allow us to draw some qualitative conclusions
concerning the stability of the solutions obtained.

It is convenient to takeQ2 as a unit of linear electric
charge density and the radius of the unperturbed jetR0
=ÎS/p as a unit of length. This implies introducing both
dimensionless charge densityq and the deformation ampli-
tude of the jet surfacer,

qsn,ld ;
Q

Q2
= F sl2 − 1d2

9fsl + 1d2 − 4ngG1/4

,

rsn,ld ;
Rmax− R0

R0
=

2În2 − l2 + sl − 1dÎn2 − 1
Îsn2 − 1dfsl + 1d2 − 4ng

− 1,

whereRmax= uyuc=0 is the maximum distance between the jet
axis and its surface. These relations give the dependence ofr
on q for differentn in the parametric formsl plays the role of
the parameterd. The relevant plots are presented in Fig. 5.
The straight liner =0 in the figure corresponds to the unper-
turbed state of the system, i.e., to the round jet.

One can notice that the deformation amplitude monotoni-
cally increases with the charge density forn=2,3,4. This

situation corresponds to the soft loss of stability of the round
jet. Indeed, it is clear that ifq,Q/Qn, then the round jet is
stable with respect to small surface perturbations with azi-
muthal wave numbers greater than or equal ton. Bifurcations
occur when the conditionq=Q/Qn holdsssupercritical bifur-
cation forn=2,3,4d. It is seen from the figure that the side
branches corresponding to our exact solutions fork from the
straight liner =0. It should be noted that the authors of Ref.
f11g, in terms of the present paper, have plotted the depen-
dence ofq2 on p that also indicates the manner in which the
solution branches bifurcate.

As the trivial solutionr =0 is unstable forq.1, the free
energy of the system can have a minimum on these branches
only. This suggests that the surface modes with small azi-
muthal wave numbers are excited in a soft regime and, at
least for a small overcriticality, our exact solutions can be
stable with respect to small perturbations that do not violate
the problem symmetry.

For n.4, the surface deformation amplituder decreases
with an increase inq in the vicinity of the branch pointsssee
Fig. 5d. Such a dependence of the amplituder on the control
parameterq corresponds to the subcritical bifurcation. Then
the potential energy of the system, i.e., the sum of the surface
and electric field energies, has a maximum on the side
branches. It immediately follows that our solutions having
azimuthal mode numbersn.4 are unstable with respect to
small changes in the amplituder.

Since both the first and second critical charge densities are
minimal for the large-scale azimuthal moden=2, it is the
surface mode that will define the jet behavior. If the linear
charge densityQ exceeds the valueQ2, then the surface of
the cylindrical jet with a round cross section becomes un-
stable. As the instability regime is soft, then, for a small
subcriticality, a new stable state corresponding to our station-
ary solutions withn=2 appears, and the round jet transforms
to an elliptic one. Unfortunately, the analysis of the balance
conditions for the forces acting on the jet surface cannot
provide the answer to the question as to whether our solu-
tions are stable for all permissible values of the electric

charge density,Q2,Q,Q̃2 swe discuss the stability with
respect to surface perturbations that do not violate the prob-

FIG. 5. The dimensionless amplitude of the jet surface deforma-
tion r as a function of the normalized linear charge densityq for
different azimuthal numbersn. The straight liner =0 corresponds to
the unperturbed state of the system, i.e., to the round jet.
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lem symmetryd. In all probability, they are unstable for a

sufficiently largeQ. The point is thatQ3,Q̃2 andQ4,Q̃2,
and, consequently, the functional of the jet potential energy
can have several extremums corresponding to differentn at
givenQ. Moreover, as evident from Fig. 2, the jet cannot be

stable if the charge-density value is close toQ̃2. An arbitrary
small deformation of the surface can lead to the rupture of

the neck. Thus the conditionQ.Q̃2 may be considered as
the sufficient condition for splitting the jet into two.

VI. CONCLUDING REMARKS

In the present work, we have obtained the two-parameter
family of the exact solutions of the classical problem in elec-
trostatics, namely the problem of finding the equilibrium
configuration of a charged jet of a conducting liquid. The
approach applied is based on the conformal mapping of the
region outside the jet to the half-plane, which has restricted
our consideration to the case of the plane symmetry of the
problem, when all quantities depend only on two variablesx
andy ssee Fig. 1d. Because of this, all the solutions obtained
correspond to the azimuthal deformations of the jet surface,
whereas the deformations in the direction of the jet axis have

not been considered. At the same time, it is just the longitu-
dinal instabilitiessthe varicose and sinuous modesd that de-
termine the behavior of a charged jet in the general casef3g.
Nevertheless, if the electrohydrodynamic instability of the
liquid cylinder is suppressed in the direction of thez axis,
our solutions can play a dominant role in the jet behavior.
For instance, the growth of the axial disturbances can be
stabilized by the magnetic field directed along the jet axis. It
is known f2g that the tangential magnetic field retards the
development of the surface instabilities which bend the field
lines sin particular, this phenomenon is used to confine the
plasmad. If the magnetic field is sufficiently strong, the only
azimuthal instability of the jet surface will develop. As was
discussed in the previous two sections, such instability leads
to the jet splitting.
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