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Exact solutions for equilibrium configurations of charged conducting liquid jets
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A wide class of exact solutions is obtained for the problem of finding the equilibrium configurations of
charged jets of a conducting liquid; these configurations correspond to the finite-amplitude azimuthal defor-
mations of the surface of a round jet. A critical value of the linear electric charge density is determined, for
which the jet surface becomes self-intersecting, and the jet splits into two. It exceeds the density value required
for the excitation of the linear azimuthal instability of the round jet. Hence, there exists a range of linear
charge-density values, where our solutions may be stable with respect to small azimuthal perturbations.
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I. INTRODUCTION shown[6] that for the case of plane symmetry, the problem

o ) of the steady-state shape of the free surface of a conducting
Cylindrical jets are known to be unstable with respect t0jiqid in an external electrical field is mathematically similar

small surface perturbations because of the development @§ the problem of the progressive capillary wave solved by
the Rayleigh instability caused by capillary effe€ld. For. Crapper[7]. The analogy provides an easy way of solving
electrically charged jets, electrostatic forces are an additionghe ejectrostatics problefg]. Finally, the method of con-

factor that determines the system behavior. The CoulomRyycting exact solutions for the equilibrium configurations of

interaction of electric charges suppresses the large-scale axi@le charged two-dimensional drops was proposed in[R&f.
capillary instability. On the contrary, it can lead to the growth|; shoyld be noted that apart from the transformations, this

of nonaxisymmetric modes of disturbances which are stablgopjem coincides with that of the stationary shape of a two-

for the uncharged jetsee[2-4] and references therginin  gimensional air bubble in a circulatory ambient flow. The

order to understand the main laws governing the behavior ado|ytions found by Zubarev for an arbitrary mode numier

a charged jet, it is important to define conditions when theg] ere independently given by Crowdy fa=2 [10] and

mutual compensation of the electrostatic and capillary forceg, \wegmann and Crowdy far=3,4,5...[11] in the prob-

is possible, as well as the conditions when such compensgsy with the bubbles. The approaches developed in Refs.

tion is impossible. Therefore, the necessity arises to detefg_11] turn out to be useful for the following analysis of

mine the region of existence of stable solutions for the pmbpossible configurations of charged jets.

lem of the equilibrium configurations of the jet surface. The article is made up as follows. In Sec. Il, we give the
In this paper, we consider possible equilibrium shapes of aquations defining the equilibrium configuration of the

charged infinite jet of a conducting liqui@n electric charge charged surface of a conducting liquid for the case of plane

distributes itself over the liquid surface so that the electricsymmetry_ It is shown that conformal transformations allow

field potential is constant everywhere inside of the conducys 1o reduce the investigation to the analysis of a nonlinear

tor). In doing so, we restrict our analysis to the Particu!arboundary-value problem on a half-plane for the Laplace
case of the azimuthal deformations of the initially C|rcular]etequaﬂon_ In Sec. Ill, using the results of Ref8~11, we

(axial deformations can be suppressed by the longitudinglpain exact solutions for the jet configurations correspond-
magnetic fieldl. For this case, the instability is induced by ing to the azimuthal mode numbens2,3,4.... InSec. IV,
the electrostatic forces, while the surface tension forces play,o equilibrium surfaces corresponding to our solutions are
a stabilizing role. o _investigated. We formulate the conditions under which the
We are presently only aware of a few nontrivial solutionsgy,ifaces become self-intersecting, and the jet splits into sev-
of the classical problem in electrostatics, that is, the probleny, 5 separate jets. In Sec. V, we analyze the dependence of
of finding the stationary configurations of the charged Suryne jet surface deformation amplitude on the control param-
face of a conducting liquidthe flat surface, the circular cyl- eter (linear electric charge densjtjor different azimuthal
inder surface, and the sphere belong to the trivial solutions nympers. It turns out that we deal with a soft loss of stability
We should primarily mention the so-called Taylor cone. Inyf the round jet surface fon=2,3,4 (supercritical bifurca-
Ref. [5], Taylor has demonstrated that the surface eIectrotion) and with a hard loss of stability fan>4 (subcritical

i 1 o 1 H . - . - -
static pressure for a cone with angle 98.6° is inversely proyrcation. Section VI contains our conclusions and some

portional to the distance from its axis and, hence, can bgsmarks concerning conditions whereby the solutions ob-
counterbalanced by the capillary pressiife sole exception (ained can play an important role in the jet behavior.
is the cone apex where the force balance condition is vio-

lated. Recently, the first author of the present paper has
II. INITIAL EQUATIONS

Let us write the equations of electrostatics that describe a
*Electronic address: nick@ami.uran.ru stationary profile of the charged surface of the conducting
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¢ —2Q¢, p—2ma*Q %p.
By analogy with Ref.[7], we choosef=In|V¢| as a new

unknown function, and the pair of conjugate harmonic func-
tions ¢ and ¢ as new independent variabléke condition
y=const defines the electric field line§he so-called com-
plex potentialw=¢—iy is an analytic function of the com-
plex variablez=x+iy. The complex expression (tadw/dz)

is also an analytic function, and, as a consequence, the real
functions

\

FIG. 1. The geometry of the azimuthally perturbed liquid jet is f=Re In(-dw/d2) = |n| v (P|’ ©)

represented schematically. The jet cross section is constant along
the z axis. = - ImIn(- dw/d2) = arctarie,/¢,) (4)

are conjugate harmonic functions of the variahkpeend . In
liquid jet with constant cross section along the direction ofparticular, this implies that the functiori satisfies the
its motion (see Fig. 1 The distribution of the electric-field Laplace equation,
potential ¢ in the plane of the jet cross secti¢x,y} is de-

termined by the Laplace equation, foot fyy=0. (5)
The boundary conditions fofr can be derived from the ex-
xxt @y =0. pressiong1) and(2). We get
It should be solved together with the condition that the con- fo= pe'+ef, ¢=0, (6)
ductor surface is equipotential,
f—e, ¢— -, (7

=0,
¢ where we have taken into account that the fluid surface cur-
and also the condition that the field of the charged conductovature can be expressed in terms of the functibaad ¢ in
coincides at infinity with the field of a uniformly charged the following way:C=~(f, expf),-o. Since in the limit|Z]
straight filament, — oo we havew— —In z for the complex potential and, con-
sequently, a closed surface corresponds to changimg 27,
e—-QIn(P+y?), XP+y>—ox, (1)  we add the condition for periodicity df with respect to the
variable i,
whereQ is the linear electric charge density of the conductor.
The jet will be considered to move at the constant velocity (. 4p) = (@, ip+ 2m), (8
v along th_ez axis of the Cartesiar) coordinate_: syst_émfluid_ closing the system of equations for the function
is at rest in the system of coordinates moving with the jet  Th5, the problem of finding the steady-state profile of a
Then the equilibrium relief of the charged boundary of acyjingrical jet surface amounts to studying the boundary-

conducting liquid is determined by the Laplace-Young stresg 5 e problem(5)~(8) on the half-plangp<0.
condition, that is, the balance condition for the electrostatic

and capillary forces acting on the surface,
Ill. EXACT SOLUTIONS

- 2 _ _
(B8m)HV ‘P)w:0+ aC+p=0, ¢=0, ) A wide class of particular solutions of Eq&)—(8) was

obtained in Ref[9]. They are given by the formula
wherea is the surface tension coefficient a@dis the local I ! (9] y g y !

curvature of the surface. The constaris expressed in terms (11 1 +a°b%e®* + 2abe™ cogny)
of the je@ velocity (v), liquid density(p), and the external f=In ! a2 + b2 — 2ab" cogny) te
(pe) and internal(p;) pressures,

9
P=pi—Pe= pv2. where we put

_ It is apparent th_at_an infinitely !ong cylindrica_ll _jet with a a=\V(n-1/(n+1), b=+vV(n-NHi(n+).
circular cross sectiofi.e., a round jetgives the trivial solu- _ . _
tion of the problem. In what follows, we will obtain its non- In these expressions is the azimuthal mode numbgn
trivial solutions corresponding to the azimuthal deformations=2,3,4,..) andl=y1-4p is the parameter characterizing

of the round jet surface. the amplitude of the surface deformation of the round jet.
For convenience, we convert to the dimensionless vari- Let us construct the equilibrium surfaces corresponding to
ables the solution(9). It follows from the definitions(3) and (4)
that the inverse transformation from the variabfeand s to
X — Q*2ma) X, y— Q*(2ma)’ly, x andy is determined by the relation
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z=—fexp(—f+i0)dw, (10

whered is the angle of inclination of the electric field inten-

sity vector to the abscissa directi_on. Taki_ng into account that  FiG. 2. Typical(superposedcross sections of the charged jet of
f and ¢ are conjugate harmonic functions and thus thea conducting liquid for n=2 and parameter valuesl

Cauchy-Riemann conditions are satisfied (6,  =1.86,1.94,1.88,2. The cross-section areas are normalized to a
=f, and§,=-f,), we obtain from Eq(9) constant.
_ -1 1 +abe™ . .
f—if=In o +21In P +w. sponds to the azimuthal number 1. The equilibrium sur-

face is given by the parametric expression
Substituting this expression into E.0), we get

— i 2 o
2i at'-b\2  2ia(t"+ blad) 2= 2" -ce - 2ciy).
Zz(l—l)f A= T )@ran Y

t"+ab (I-)("+ab)’ One can readily see that this surface has the self-intersections

for arbitraryc. Thus, the solutiori15) with the mode number

where we have introduced the notatiorexp-w). The . : ;
n=1 is physically meaningless.

transformation corresponding to E41) maps the unit circle
[t|=1 onto the free surface of a liquid. The algebraic expres-

sion (11) relates the results of Ref9] and the results of IV. CONDITIONS OF THE JET SPLITTING
Refs.[10,11], where the conformal mapping to the exterior

of the unit disk was applied for the problem related to an 1€ solutions(13) and(14) obtained in the previous sec-
analysis of the profile of a two-dimensional bubble in a cir-tion enable us to find exact critical values of the linear charge

culatory ambient flow. densities reqL_Jired) f_(_)r the onset of the_ azimuthal instability
Bearing in mind thatp=0 at the boundary and, conse- ©f the round jet andii) for the jet splitting. _
quently,t=exp(i), we obtain from Eq(11) that the sought- N the limit | —n, express[on$13) and(14) for the equi--
for equilibrium surfaces are given by the following paramet-l'p”um shape of a charged jet of a conducting liquid define
fic expression: circles of radius 2(n+1), which correspond to the unper-
turbed state of the jet, namely, to the round jet. With decreas-
_ 2ia%d(e"’ + b/ad) ing the parametet, the jet surface is deformed. At certain

(12) n-dependent critical values of the parametel, the region

occupied by the liquid ceases to be simply connected, and
where ¢ plays the role of the parameter. The closed surfacehe jet splits(see Figs. 2-% For 1<I<I,, the solutions are

2 - D@ +ab)

corresponds to the change gnin the range 6= <2 physically meaningless so that for fixadhe set of the prob-
Let us return to the real variables. Having separated théem solutions corresponds to the interligk | <n.
real part from the imaginary one in E(L2), we find We now determine the critical values of the paraméter
1 3 _— For n=2, the condition of the surface self-intersection has
_abcogny - ) +a’bcodny+ ) + (a”+ b*)cosy the form

[1+a°b?+ 2abcogny)](l - 1)/2 '

(13 x=0, ¢y=7/2,

which corresponds to the singularity at the poiaty=0. It
_a Yo sin(ny - ) — a®b sin(ny+ ) - (a2 + b)sin i follows from this condition that, is a root of the quadratic

equation
[1+a%0? + 2abcosny) |(I - 1)/2 .

(14)

The formulas(13) and(14) represent a family of exact two-
parametric solutions for the equilibrium shape of a charged
jet of a conducting liquid. To the best of our knowledge,
these solutions for the jet configurations have not been con-
sidered so far.

The particular solution$l3) and(14) of the initial equa-
tions relate to the cage+ 0. Note that fopp=0 it is possible
to find the general solution of Eqgk)—(8). It has the follow-
ing form:

f=In(1-c? - In(c®-2ce®cosy+e2%) —p, (15

where the constart satisfies the inequality €c<1. This FIG. 3. The cross sections of the jet fo=3 and parameter
solution is 2r-periodical with respect t@), so that it corre- valuesl=2.53,2.59,2.78, 3.
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1715-185-63=0.

lts root satisfying the condition &13<3 is [3=(9
+24y2)/17~2.52. If =I5, the volume occupied by liquid
loses its simple connectivity and one jet splits into four un-
equal parts. This situation is illustrated in Fig. 3.

For n=4 (see Fig. 4, we obtain from Eq(18) h?=5/13,
and Eq.(16) transforms into the equation

4433 - 48d,- 2957 =0.

It follows herefrom thaﬂ4:(243+37&’TC))/443z3.19. For
the next azimuthal numben=5, we deduce from Eq18)

3h*-24n?+5=0,

FIG. 4. The cross sections of the jet for4 and parameter and henceh?=4++43/3. Substituting this value of the pa-

values|=3.19,3.35,3.8,4. rameterh into Eq.(16), we getls~ 3.85. In a similar manner,
we can find thatg=4.55 andlg=5.85.
712-6l,-13=0. Thus, we have defined the values of the paramiefer

which the solutions of the problem of the equilibrium con-

Only one solution of the equatioh,=13/7~1.86, meets the figurations of the jet surface exist. Let us now consider a jet
requirement X1,<2. The jet splits into two equal parts at with given characteristicéthe cross-section aregand the

this value of the parametér(see Fig. 2 surface tension coefficient) and determine the linear charge
Forn>2, the condition of the self-intersection of the sur- densitiesQ, which correspond to the allowable values|pf
face can be written as i.e., to the interval,,<I=<n.
For the family of the solution$13) and (14), the areaS
x=0, dxdg=0. can be easily found with the help of the Green’s formula

(compare with Ref{11]),

fﬂ’n L9z, 4rl(+ 12~ 4n]

Hence it follows that the critical values bfi.e., the quanti-

tiesl,, are determined by the set of equations s=-"im

2 d 12-12
a(n+ 1)(a2+ b?cosy = 2b(n - 1)[n sin(ny)sin 0 v ( )
+ cogny)cosy], (16) where the dependenc(eaz_) of thg _cpmp!ex variable on 1,//_ '
has been used. Returning to initial dimensional quantities,
we get

a(n+ 1)4(a+ b?)sin = 2b[2n sin(ny)cosy— (n? + 1)
Xcogny)sin . (17

It is easy to see that, dividing E¢L7) by Eqg. (16), we can
eliminate the parametérfrom these equations. As a result,
we obtain the equation fay at the point of the curve self-

_QY(1+1)*-4n]
T ma?(1?7-1)?
Solving this relation with respect tQ, we arrive at the de-

pendence of the linear charge density on the surface tension
a, the jet cross-section aréi and the steady-state solution

intersection,
parameters andn,
tan(ny)[(n? - Dtar? — 2] + 2ntany=0. o- { Ta?S(1? 1)2} 14 9
With the help of de Moivre’s formula, this trigonometrical (I+1)?~4n

equation can be brought to the algebraic form It enables us to determine the critical values of the charge

density.

In the problem under consideration, we can define two
critical charge-density values for every azimuthal wave num-
ber n. The first critical density valu€), corresponds to the
threshold of linear instability of the jet with a round cross
section. It can be calculated from the form(1#®), where we

can be transformed into the quadratic equation with respedpUst takel=n [recall that forl=n the expressiongl3) and
to the unknown quantity;,. (14) define circleg
For n=3, the expressioli18) transforms into the trivial _ 2 2c11/4
. ) ; : =[m(n+ 1)“aS|~".
equation h?=1, from which it follows that the self- Qo =l Ja’s]
intersection takes place gt=/4. For this value of the pa- The critical charge density is seen to grow monotonically
rametery, the condition(16) reduces to solving the equation with n. Its minimum value corresponds to=2,

[(n?- 1h? - 2]Im(1 +ih)"+ 2nhRe(1 +ih)"=0, (18)

where we puth=tany. Solving this equation of thath or-
der, we can define the value bfand, consequently, af for
any n. At given ¢, the sought-for critical values of the pa-
rameterl can be determined from the relatigh6), which
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Q2 — (97Ta’28)l/4 ~ 2.3161(1/281/4.

If the linear charge densit of the jet exceeds this value, an
electrohydrodynamic instability of the jet surface will de-
velop. At the initial stage of the process, this leads to the
elliptic deformation of the jet cross section. The disturbances
corresponding to the modes with lesser spatial scale<,

can grow only at larger values of the linear charge density.

The second critical density vaILI~en corresponds to the
situation when the volume occupied by the jet loses its
simple connectivity and the jet splits into two or more sepa-

PHYSICAL REVIEW E 71, 016307(2009

n=4

8

e

rate jets(see Figs. 2-% We can find it substituting=1,, into 0 1 1z 13 14 15 15 17
Eq. (19), 9
~ 170128(|§ - 1)2 1/4 FIG. 5. The dimensionless amplitude of the jet surface deforma-
W= m tion r as a function of the normalized linear charge densitipr
n

different azimuthal numberns. The straight line =0 corresponds to

The charge density takes the minimal valuerier2, whence  the unperturbed state of the system, i.e., to the round jet.

it follows that the jet splitting into two approximately equal
parts can be considered as the most probable scenario of t
jet disintegration. Sinc,=13/7, the exact minimal value of
the second critical density is given by the following expres-
sion:

ﬁguation corresponds to the soft loss of stability of the round
jet. Indeed, it is clear that ifi<Q/Q,, then the round jet is
stable with respect to small surface perturbations with azi-
muthal wave numbers greater than or equail.tBifurcations
occur when the conditiog=Q/Q,, holds(supercritical bifur-
cation forn=2,3,4). It is seen from the figure that the side
branches corresponding to our exact solutions fork from the
Note that the critical densitieQ, can be found from the straight liner=0. It should be noted that the authors of Ref.
linear analysis of the stability of the round jet surfdsee, [11], in terms of the present paper, have plotted the depen-
for example, Refg.3,12)). In so doing, it is not necessary to dence ofg? on p that also indicates the manner in which the
know the exact solutions for the stationary jet shape. Howsplution branches bifurcate.
ever, we must know them for determining the conditions of ~ As the trivial solutionr=0 is unstable fo>1, the free
the jet splitting or, in other words, for finding the second energy of the system can have a minimum on these branches
critical charge densities. only. This suggests that the surface modes with small azi-
muthal wave numbers are excited in a soft regime and, at
least for a small overcriticality, our exact solutions can be
stable with respect to small perturbations that do not violate
Now consider the dependence of the jet surface deformahe problem symmetry.
tion amplitude on the linear electric charge density. Such an For n>4, the surface deformation amplitudalecreases
analysis will allow us to draw some qualitative conclusionswith an increase i in the vicinity of the branch pointésee
concerning the stability of the solutions obtained. Fig. 5. Such a dependence of the amplituden the control
It is convenient to takeQ, as a unit of linear electric parameteiq corresponds to the subcritical bifurcation. Then
charge density and the radius of the unperturbedRgt the potential energy of the system, i.e., the sum of the surface
=\S/7 as a unit of length. This implies introducing both and electric field energies, has a maximum on the side
dimensionless charge densifyand the deformation ampli- branches. It immediately follows that our solutions having
tude of the jet surface, azimuthal mode numbers>4 are unstable with respect to
small changes in the amplitude
q(n,)) = Q - { Since both the first and second critical charge densities are
Q. minimal for the large-scale azimuthal mode 2, it is the
surface mode that will define the jet behavior. If the linear
Riax— Ry 2Vn2 =12+ (1 - 1)\yn2-1 charge densityQ exceeds the valu®,, then the surface of
=TT > - the cylindrical jet with a round cross section becomes un-
Ro V(n®= 11+ 1)7- 4n] stable. As the instability regime is soft, then, for a small
whereR = Yl =0 is the maximum distance between the jetsubcriticality, a new stable state corresponding to our station-
axis and its surface. These relations give the dependence ofy solutions witm=2 appears, and the round jet transforms
onq for differentn in the parametric fornl plays the role of ~to an elliptic one. Unfortunately, the analysis of the balance
the paramet@r The relevant plots are presented in Fig. 5.conditions for the forces acting on the jet surface cannot
The straight liner=0 in the figure corresponds to the unper- Provide the answer to the question as to whether our solu-
turbed state of the system, i.e., to the round jet. tions are stable for all~permissible values of the electric
One can notice that the deformation amplitude monotonicharge densityQ,<Q<Q, (we discuss the stability with
cally increases with the charge density for2,3,4.This  respect to surface perturbations that do not violate the prob-

62 = (18007Ta23149) 1/4 3.28a1/281’4_

V. STABILITY ANALYSIS

(|2 _ 1)2 1/4
o[(l +1)°- 4n]] '

r(nl)=
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lem symmetry. In all probability, they are unstable for a not been considered. At the same time, it is just the longitu-

sufficiently largeQ. The point is thaQ;<Q, andQ,<Q,,  dinal instabilities(the varicose and sinuous mogesat de-
and, consequently, the functional of the jet potential energjermine the behavior of a charged jet in the general £ake
can have several extremums Corresponding to diffememit NevertheleSS, if the e|ectr0hydr0dynamlc |nStab|I|ty of the
given Q. Moreover, as evident from Fig. 2, the jet cannot beliquid cylinder is suppressed in the direction of thexis,

stable if the charge-density value is closefztp An arbitrary our solutions can play a dominant role in the jet behavior.

. or instance, the growth of the axial disturbances can be
small deformation of the surface can lead to the rupture O*s:tabilized by the magnetic field directed along the jet axis. It

the neck. Thus the conditioQ>Q, may be considered as g5 known [2] that the tangential magnetic field retards the

the sufficient condition for splitting the jet into two. development of the surface instabilities which bend the field
lines (in particular, this phenomenon is used to confine the
VI. CONCLUDING REMARKS plasma. If the magnetic field is sufficiently strong, the only

In the present work, we have obtained the two—paramete‘?.ZimUthal i.nstability O.f the jet surfa}ce will de\{elop. AS was
family of the exact solutions of the classical problem in eIeC_dlscussed in the previous two sections, such instability leads

trostatics, namely the problem of finding the equilibriumtO the jet splitting.

configuration of a charged jet of a conducting liquid. The
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